

LA-UR-15-21580

Approved for public release; distribution is unlimited.

Title: Micro-X-ray Fluorescence (MXRF) Direct Solids

Author(s): Worley, Christopher Gordon

Intended for: Providing JOWOG-22 technical information to UK participants

Issued: 2015-03-04

Micro-X-ray Fluorescence (MXRF) Direct Solids

Chris Worley
Actinide Analytical Chemistry (C-AAC)

Outline

Description of our XRF capabilities

Micro-XRF (MXRF) introduction

MXRF BSAP examples

Summary

XRF Capabilities

Wavelength dispersive XRF (WDXRF)

Polarized energy dispersive XRF (Polarized EDXRF)

Handheld XRF

Micro-focused X-ray beam XRF (MXRF)

Wavelength Dispersive XRF (WDXRF)

- High power 4000 Watt Rh x-ray tube
- Elemental Range: Boron & Fluorine Americium
- Advantages
 - Automated: 150 samples can be batched
 - Best sensitivity and reproducibility
 - Best for low Z elements
 - Best for high rad samples No detector saturation
- Limitations
 - Sequential spectrometer
 - Scan one element at a time
 - Slow for analysis of large set of elements
 - High power X-rays can damage fragile samples
 - Most expensive XRF instrument

Polarized Energy Dispersive XRF (Polarized EDXRF)

- 100 kV X-ray tube
 - Excellent sensitivity for medium & high Z elements
- Elemental range: Sodium to Curium
- 15 secondary target choices
 - Choose target to optimize elemental detection limits (LLDs)
 - Reduced spectral background Even better LLDs
 - Minimal sample prep Ratio to secondary target X-ray scatter instead of adding internal standard
- No sample damage
 - Secondary target X-rays do not heat the sample
 - Long count times possible Ultimate LLDs
- Very high rad samples can saturate the detector
- EDXRF energy resolution not as high as WDXRF
- EDXRF low Z elemental sensitivity worse than WDXRF

Handheld XRF

- Portable Take instrument to the sample
- Hold to surface and pull trigger
- Elemental range: Sodium to Americium
- Metal alloy identification
 - Glove box steel grade ID for QA documentation
 - Sample containers alloy ID
- Qualitative analysis of any large object
- Pu and TRU quantification possible with method development

Micro-XRF (MXRF)

- EDAX Orbis instrument
- 30 μm diameter irradiated spot
- 1 & 2 mm spot sizes Larger samples
- Move sample on stage to image surface elemental distributions
- Elemental range: Sodium to curium
- Image up to 10 cm x 10 cm areas
- X-ray source filters
 - Improves elemental detection limits

XYZ translation stage

- HEU/aluminum alloy submitted for comprehensive chemical analysis
- Originally understood the material to be fairly homogeneous
- NDA characterization by MXRF
 - Plate compositions <u>NOT</u> uniform
 - MXRF used to guide where to extract material for further characterization
 - 3D elemental structure HEU fuel plates with Al cladding; <u>NOT</u> homogenous

MXRF U & Al image overlay

Blue = Aluminum

Red = Uranium L

Pink = Al & U overlap

- No U on left edge First evidence of aluminum cladding surrounding U layer
- Next mounted on cut edge to analyze material inside the plate

HEU/Al plate mounted with cut edge facing up

(Edge cut with sheet metal shear prior to receipt of sample)

Used MXRF to image red boxed area of plate edge

Aluminum Uranium

- Direct confirmation of HEU layer between Al cladding
- Measured U layer thickness
- HEU layer spectral analysis → U & Al alloy

Image of entire cut edge - Aluminum and uranium overlay

Red = Aluminum Green = Uranium

Standard-less quantification

- Approximate concentrations only (high fidelity quant requires standards)
- Analyzed areas of HEU & Al layers exposed on cut edge using microfocused X-ray beam
- HEU layer only ~9% Uranium; majority aluminum
- Aluminum layer almost all Al; a few impurities present

Uranium-containing Layer

Element	Approx Wt%
Aluminum	90.7
Uranium	9.1
Miscell impurities	0.2

Aluminum Layer

Element	Approx Wt%
Aluminum	98.7
Calcium	0.6
Iron	0.5
Miscell impurities	0.2

MXRF - Electrorefined (ER) Plutonium Metal

- ER Pu metal cuts always extracted from parent for chemical analyses (eg. trace elements by ICP)
- If parent not homogenous, will affect reported chemistry results

 MXRF was examined as an NDA method to detect any parent metal elemental heterogeneity prior to DA

MXRF - ER Plutonium Metal

Pu image

350 mg Pu metal chunk

Iron image

Tungsten image

Tantalum image & XRF spectrum from lower right

MXRF - ER Plutonium Metal

- Fe, Ni, Cr spots detected
 - Pu surface oxide removed with steel wire brush
 - A few spots have steel signatures (purple & cyan)
 - Some steel residue from wire brush may be present
 - But other spots are due to a single element (eg. nickel green spot)
 - Some spots indicate sample heterogeneity (ie. pure blue, green, or red)
- If heterogeneity detected by MXRF, avoid T&E repeating ICP prep and analysis

Overlay of Pu metal image with impurity spots

Fe Ni Cr

NISA NATIONAL PROCESS AND ADMINISTRATION

Cast Pu Metal MXRF of ~9 mm x ~6 mm area

Fe

Relative

Intensity

Visible Image

Ga Relative Intensity

Pu Relative Intensity

Cast Pu Metal – IRON MXRF MAP

Cast Pu Metal Smaller Area & Iron Line Scan

310 μm Line scan in green

Distance (mm)

Cast Pu Metal **MXRF Line Scan Relative Intensities***

IRON - Relative intensity across line scan

185

PLUTONIUM - Relative intensity across line scan

GALLIUM - Relative intensity across line scan

Summary

- MXRF complements other imaging techniques such as SEM-EDS.
- MXRF method of choice for:
 - Large area analyses (up to 100 cm² areas)
 - True NDA No damage from X-ray beam
 - Medium and high atomic number elemental analyses
 - Non-conducting materials (eg. plastics, HEPA filters, etc.)
 - Samples incompatible with vacuum (eg. liquids, moist samples)
- Presented several MXRF BSAP-related applications
- Other examples of XRF BSAP-related applications
 - Signatures from test debris
 - Gallium and uranium quantification in Pu metals and oxides
 - Alloy identification of NM forensics sample containers
 - Approximate quantification of major & minor elements in Pu oxides

